Impact of Sulfur Regulations of Shipping Fuels on Coastal Air Quality

André Seyler1, Folkard Wittrock1, Lisa Kattner1,2, Barbara Mathieu-Uffing1,2, Enno Peters1, Andreas Richter1, Stefan Schmolke2, Andreas Weigelt2, and John P. Burrows1
1Institute of Environmental Physics (IUP), University of Bremen, Germany
2Federal Maritime and Hydrographic Agency (BSH), Hamburg, Germany
Contact: aseyler@iup.physik.uni-bremen.de

EGU 2016
Session: AS 3.9
Poster: X2.422

MeSmaRt project
• “Measurements of Shipping Emissions in the Marine Troposphere” – a project coordinated by the University of Bremen with support of the German Federal Maritime and Hydrographic Agency (BSH) and the Helmholtz Zentrum Geesthacht
• Aims: – Measure ship emissions in the marine environment, comparison with satellite and model data – Investigate their impact on the atmospheric boundary layer – Development of a concept for controlling ship emissions
• Operational area: German Bight and Baltic Sea
• Stationary measurement sites:
 - NHU: 46° to navigation channel in the mouth of Elbe

Measured slant column densities of NOx and SO2
• Slant column densities of NOx and SO2 measured on Neuwerk on Wednesday, 23 July 2014 in 0° elevation (left): High and short ship emission peaks, enhanced coastal background pollution in the morning
• NOx Peaks in azimuthal viewing directions show movement direction of ship (right)

Daily means: Comparison of MAX-DOAS with in-situ volume mixing ratios
• Good agreement in progression of curves
• In-situ values systematically higher → expected, because MAX-DOAS averages over long light path and plumes usually never cover the whole light path → peak heights are usually underestimated

Mean VMR depending on wind direction
• Red curve: before 1 January 2015
• Blue curve: after 1 January 2015
• Blue sector: Wind from open North Sea, shipping is the only source
• Green sector: Wind from the coastline, air mass contains shipping emissions as well as land-based air pollution (traffic, industry, ...)

Impact of land-based pollution on air quality in the German Bight
• All NOx measurements (solid line): Clearly visible diurnal (left) and weekly cycle (right)
• Ship traffic should not depend on weekday and hour of day ⇒ it has to be road traffic emissions from land
• Only wind from open North Sea (darker): Cycle varies, significantly lower values
• Although Neuwerk is 8 km away from the coast, land-based air pollution strongly influences air quality on the island

Conclusions
• MAX-DOAS can measure emission peaks from single ships as well as background pollution
• NOx: No regulations ⇒ no change in emission
• SO2: Allowed fuel sulfur content dropped from 1.0 % to 0.1 % (MARPOL, ZF/7 Annex VI) ⇒ significantly lower SO2 emissions, especially from the open North Sea sector
• High NOx concentrations 10 to 15 km away from our instruments
• In-situ device cannot see plumes

Further information: visit www.mesmart.de and www.iup.uni-bremen.de/doas/

Acknowledgements
This project is funded by the “Federal Ministry of Transport and Digital Infrastructure”, part of the instruments have been funded by the University of Bremen. The authors thank the staff of the BSH Laboratory in Hamburg-Schrobenhausen for their assistance and their great support. Many thanks also to the „Wasser- und Schiffahrtsamt Cuxhaven und Hamburg” and the Hamburg Port Authority (HPH).

Selected references

This poster as PDF: