Accounting for surface reflectance in the derivation of vertical column densities of NO₂ from airborne imaging DOAS

Andreas C. Meier *(1), Anja Schönhardt (1), Andreas Richter (1), Tim Bösch (1), André Seyler(1), Daniel Constantin (3), Reza Shaiganfar (5), Alexis Merlaud (4), Thomas Ruhtz (2), Thomas Wagner(5), Michel van Roozendael (4) and John P. Burrows (1)

1. AROMAT campaign
- The AROMAT (Airborne ROmanian Measurements of Aerosols and Trace Gases) campaign was held in September 2014
- Dedicated to comparison of multiple remote sensing and in-situ instruments for satellite data validation
- Many European research institutions involved
- Two target sites
 - City of Bucharest (urban emissions from traffic and industry)
 - Ju Valley (Two large power plants with high emissions and localized plumes)
- Shown here: solely measurements in the Bucharest area

2. Instrumental setup and method
- **Instrumental setup**: Scattered sunlight from below the aircraft is collected and fed into an imaging spectrometer via a fiber bundle (35 individual fibers), retaining the spatial information.
- **Photographs of AirMAP & Aircraft**:
 - Top left: Aircraft AirMAP was installed on (Cessna 207 Turbo); operated by FU Berlin.
 - Bottom left: Aircraft with port of entrance optics and video camera
 - Right: Instrument rack carrying spectrometer, PCs, UPS etc.
- **The AirMAP viewing geometry**: The swath of the push-broom imager depends on flight altitude, groundspeed of the aircraft and exposure time. For typical values during AROMAT this results in a resolution of 30 x 84 m².

3. Air Mass Factors
- **VCD = DSCD / AMF**:
- **AMF computed with SCIPTRAN and compiled into a look-up table with the following dependences:**
 - NO₂, NO₃ profile: sun/sky reflectance
 - Surface reflectance
 - Relative air mass factor (AMF)
 - Viewing zenith angle
 - Sea level pressure
 - Flight altitude
 - Downwelling solar radiation
 - Aerosol profile derived from AERONET measurements from FURIBIS

4. Surface reflectance
- **Importance of surface reflectance for the Air Mass Factor**
 - Strong dependency of the AMF on surface reflectance
 - Bright surfaces increase the contribution of light coming from the surface
 - Thereby increasing the fraction of light that has passed the trace gas layer (close to the ground)

5. Application of surface reflectance on VCD retrieval
- **Surface reflectance constant (0.05)**
- **Surface reflectance derived from measured intensities**: Comparison to mobile car DOAS measurements
- **Surface reflectance derived from measured intensities**
 - Generally good agreement between the mobile car DOAS and AirMAP
 - The slope of the linear orthogonal fit is mainly determined by assumptions on the aerosol and NO₂ profile
 - Depending on the viewing geometry (airborne / ground-based) aerosols above the NO₂ layer can shield the sunlight from passing through the layer (airborne) while they might enhance the NO₂ signal for the ground based system by multiple scattering processes.
 - Up to now the data was evaluated independently by the different research groups, without common assumptions in the AMF computation

6. Comparison to mobile car-DOAS measurements
- **University of Galati**
 - Elevation angle: zenith
- **Max-Plank-Institute for Chemistry Mainz**
 - Elevation angle: 22°
- **Selected references**

7. Summary & Outlook
- **We have developed a method to account for highly variable surface reflectance in an urban environment**
- Applying the derived surface reflectances in AMF computation success fully eliminates spatial patterns in the retrieved NO₂ VCD originating from varying surface reflectances
- Comparison to two independent co-located mobile car DOAS measurements yields good agreement
- Comparison between car and airborne measurements can be further improved by homogenized assumptions on the aerosol and NO₂ profile
- Further analysis of the dataset to better understand the influence of aerosols on the radiative transfer

Acknowledgements
The authors gratefully acknowledge funding of the AROMAT campaign by ESA, and further financial support by the University of Bremen. Moreover we would like to thank the Romanian authorities for the approval of the research flights and all institutions that contributed to the successful course of the campaign.