A feasibility study for the monitoring of diurnal variations of tropospheric NO₂ over Tokyo from a geostationary satellite

Katsuyuki Noguchi (1,2), Andreas Richter (1), Andreas Hilboll (1), John P. Burrows (1), Hitoshi Irie (3), Sachiko Hayashida (2), and Yu Morino (4)

(1) Institute of Environmental Physics, University of Bremen, Bremen, Germany, (2) Nara Women’s University, Nara, Japan, (3) Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan, (4) National Institute for Environmental Studies, Tsukuba, Japan

Abstract

We have conducted a feasibility study for the monitoring of diurnal variations of anthropogenic nitrogen dioxide (NO₂) in the lower troposphere over Tokyo, Japan, assuming a geostationary satellite’s measurement. The retrieval simulation showed that the total NO₂ slant column (SC) density (2.5-4.5 \times 10^{16} \text{ cm}^{-2}, depending on local time and season) could be measured with a precision of 10-20% at signal-to-noise ratio (SNR)=200 and 1-2% at SNR=2000, respectively. In our estimation, the precision of the SC did not strongly depend on local time (LT5-18 in summer and LT7-16 in winter) or season (summer and winter). We found that the diurnal variation of total NO₂ SC density from morning to evening (the magnitude is about 1.0 \times 10^{16} \text{ cm}^{-2}) could be well detected by a sensor with SNR>500. The detection of a local minimum appearing at summer noon (0.5 \times 10^{16} \text{ cm}^{-2}) needs better precision (SNR>1000).

Results – Precision and Bias of Slant Column Retrievals

Diurnal variation of SC

- Diurnal variation of SC: ~10^{16} \text{ cm}^{-2}, detectable with SNR>500.
- Local minimum in summer afternoon: 0.5 \times 10^{16} \text{ cm}^{-2}, detectable with SNR>1000.
- SC (i.e., air mass factor) depends significantly on wavelength in the fitting window (425-450nm).

Relative precision of SC retrieval

- Precision of total SC is 10-20% for SNR200 and 1-2% for SNR2000.
- Use of \(\sigma\) at 223K or 293K causes a bias of 0.2-0.3 \times 10^{16} \text{ cm}^{-2}.
- Precision of SC has small dependency on local time and season.
- CCD sensor currently discussed has a precision of 2-4% (~SNR1000).

Bias caused by temperature dependence of cross-section

- Temperature dependence of absorption cross-section (\(\sigma\)) has been introduced into the RTM.
- Use of \(\sigma\) at 223K or 293K causes a bias of 0.2-0.3 \times 10^{16} \text{ cm}^{-2}.
- \(\sigma\) at lower temperature (223K) gives a better fitting results in morning and evening due to larger light path in the stratosphere.

Future work...

- Separation of the tropospheric SC from the total SC and air mass factor calculation should be examined for realistic scenario.

Acknowledgements

K. Noguchi is supported by JSPS Postdoctoral Fellowships for Research Abroad. Dr. Yasuji Yamamoto of JAXA provided us useful comments for SNR calculation.