1. Introduction

Objectives of aircraft imaging DOAS measurements:
- Retrieval of tropospheric trace gases, here nitrogen dioxide \(NO_2 \)
- Mapping of \(NO_2 \) pollution sources, identification of source regions and strengths
- Satellite data validation, investigation of sub-pixel variability

Positive aspects of aircraft measurements and imaging DOAS:
- High spatial resolution \(-100\,\text{m} (\text{down to } \approx 30\,\text{m})\) at useful spatial coverage
- Several viewing directions across track are observed simultaneously
- No data gaps occur along track

The IODAS instrument in the Polar-5 aircraft

2. Instrumental setup and viewing geometry

Technical information:
- Wide angle objective and fibre bundle: \((35\,\text{fis})\) as entrance optics
 - Acton 300i imaging spectrometer
 - Grating 6000/mm, blazed \(\lambda = 500\,\text{nm} \)
 - Spectral window \(412 \pm 43\,\text{nm} \)
 - Spectral resolution: \(0.7 \pm 1.0\,\text{nm} \)
 - Frame transfer (FT) CCD Detector, \(512 \times 512 \text{ pixels}, 8.2 \times 8.2\,\text{mm}^2 \)
- Gap-free measurements (due to FT CCD) and flexible positioning in the aircraft (due to sorted fibre bundle)

Viewing geometry:
- 2 nadir ports: spectrometer & camera
- Geolocation: from GPS & grrometer
- Viewing directions: max. \(35\,\text{typ.} 9\,\text{lines of sight}, (LOS, i) \) from 35 lines of sight
- Field of view: \(48^\circ \) across track (\(\vartheta \))
- Swath width of \(\varphi \) in altitude \(\alpha \)
- Exposure time \(t_{\lambda} \): typ. \(0.5\,\text{ms} \)
- Spatial resolution: \(30\,\text{m} \ldots 100\,\text{m} \)

3. Imaging quality and \(NO_2 \) retrieval quality

Demonstration of imaging quality

4. \(NO_2 \) vertical columns and emission flux calculations above a power plant

\(NO_2 \) retrieval above a power plant

Air mass factors, AMF (SCIATRAN calculations)

Dispersion of concentration \(c \) across plume \((\vartheta)\) and over altitude \((\alpha)\)

Approximation of source strength is achieved via discrete summation over the product of vertical columns \((Vz)\), wind speed and path length \(L \)

5. Summary & Outlook

Summary
- The imaging DOAS instrument shows good imaging quality and good performance for \(NO_2 \) measurements
- Aircraft pitch, roll and yaw angles are fully taken into account for correct ground geolocation
- \(NO_2 \) column amounts have been retrieved, pollution sources are observed (power plant, cities, etc.)
- For typical situations (geometry, albedo, SZA) spatial resolution of \(30\,\text{m} \) (along and across track)
- Further findings: Large spatial \(NO_2 \) variability and consistent \(NO_2 \) retrieval results for different LOS divisions
- \(NO_2 \) emission fluxes are calculated for a power plant point source in agreement with emission reports

Activities for the future
- Air mass factor consideration will be refined in future analyses
- Further dedicated campaigns will be conducted with the imaging DOAS instrument above pollution sources

Acknowledgements

The present work is financially supported by the University of Bremen. Campaign support from Kenn Borek Air Ltd., Kenn Borek Air Ltd. Canada, AWI, Germany; 50-21 m / 5.2 m / 29 m

X. Y. Z. gratefully acknowledged. Thank you to the aircraft crew from Kenn Borek, Canada. COSMO-DE model data is provided by the German weather service DWD. Radiative transfer calculations are performed with the IUP Bremen SCIATRAN model, thanks to V. Rozanov.

Selected References