Introduction

Formaldehyde, the simplest but most abundant of the aldehydes
is harmful to health, environment, ...
HCHO is an important indicator of hydrocarbon emissions and photochemical activity
HCHO sources
- oxidation of Methane provides constant HCHO source
- tropospheric NMHC emissions
- biomass burning
- fossil fuel combustion
HCHO sinks
- reaction with OH
- photolysis (<400 nm)
→ HCHO is a good test for model oxidation mechanism and emission scenarios
→ it could be used as a proxy for biogenic emissions (isoprene) e.g. Palmer et al., 2003

Data retrieval

- Differential Optical Absorption Spectroscopy (DOAS) yields slant columns – averaged absorption along all contributing light paths
- Conversion to vertical columns using air mass factors (AMF) calculated by radiative transfer model SCIAMACHY (Rigault et al., 2004)
- for satellites: constant background between 200 and 220°E assumed (normalisation) to account for instrumental drifts/inhomogeneities - lookup table for AMF taking into account albedo, orography, aerosol and HCHO profile shape in (total 48,000 scenarios)
- from MAX-DOAS observations profile retrieval possible using Breman Advanced MAX-DOAS Retrieval Algorithm (BREAM, see poster Oetjen et al.)

The Global View

GOME HCHO 1997-2001

<table>
<thead>
<tr>
<th>VC (mole cm⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
</tr>
<tr>
<td>1.00</td>
</tr>
<tr>
<td>1.25</td>
</tr>
<tr>
<td>1.50</td>
</tr>
<tr>
<td>1.75</td>
</tr>
<tr>
<td>2.00</td>
</tr>
</tbody>
</table>

LMDz-INCA HCHO 1997-2001

<table>
<thead>
<tr>
<th>VC (mole cm⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
</tr>
<tr>
<td>1.00</td>
</tr>
<tr>
<td>1.25</td>
</tr>
<tr>
<td>1.50</td>
</tr>
<tr>
<td>1.75</td>
</tr>
<tr>
<td>2.00</td>
</tr>
</tbody>
</table>

Fig 2: The upper figure shows average values for HCHO calculated from all GOME instruments between 1997 and 2001. BREDOM stations for latitudes less than 60° and the location of the FORMAT campaigns in 2002 and 2003 (see Figure 4) are marked. The lower figure illustrates the HCHO distribution as modelled by LMDz-INCA. The correlation between both datasets is 0.73. The maximum values of HCHO are well correlated to regions with a high vegetation index (tropical rainforest). The impact of industrial emissions on the total column is small.

Validation

Fig 3: Comparison between GOME and SCIAMACHY. Better spatial resolution for SCIAMACHY, but bias to higher latitudes.

HCHO Time series from GOME and LMDz-INCA

Fig 4: Comparison between GOME/SCIAMACHY and MAX-DOAS data analysed with BREAM above Milan region (Alps).

Conclusions

- continuous GOME nadir measurements of HCHO since July 1995
- SCIAMACHY HCHO available, but poorer quality at high latitudes
- agreement between different instruments quite o.k. at low latitudes
- MAX-DOAS Network is able to validate the satellite measurements and provide a valuable link between in situ observations and satellites
- reasonable agreement between model and observations, but:
 - lower values in model above oceans, not an offset problem! at least in part outflow
 - significantly smaller values from satellite above the tropical rainforest in Brazil
 - in general a better agreement between model and observations is obtained for the run taking into account the annual variation of biomass burning

References

Acknowledgements

This project has been funded in part by:
- the German Federal Ministry of Education and Research (BMBF)
- the German Aerospace Agency (DLR)
- the German Research Council (DFG) and the State of Bremen and the University of Bremen
- the European Union (FORM-ACT, EVK2-2001-00455, RETRO, EVK2-CT-2002-00170)

We would like to thank the UNEP staff in Nairobi, the staff of the Koldewey station in Ny Alesund and the Universidad de Los Andes, Merida for their assistance.

www.doas-bremen.de