aeronomie.be

CINDI NO₂ workshop, Bremen, 18-19 Nov. 2009

BIRA's aerosol and NO₂ retrievals

Federal science pol

The retrieval algorithm

Forward model

Calculate radiances and O_4 and NO_2 DSCD @ different wavelengths and viewing geometries for a given atmosphere.

Linearized radiative transfer code (LIDORT v3.3) (R. Spurr, 2007)

INPUTS: - P, T

- Surface albedo
- Trace gases (σ,ρ)
- Aerosol (extinction profile single scattering albedo phase function)

Advantage of LIDORT : analytical calculation of weighting functions

aeronomie.be

Aerosol inversion

• Optimal Estimation method (Rodgers, 2000)

$$k_{i+1} = k_i + (S_a^{-1} + K_i^T S_{\varepsilon}^{-1} K_i)^{-1} [K_i^T S_{\varepsilon}^{-1} (y - F(k_i)) - S_a^{-1} (k_i - k_a)]$$

k = aerosol extinction vertical profile

 k_a = apriori aerosol extinction vertical profile S_a = uncertainty covariance matrix of the apriori profile

F = Forward model (LIDORT) y = measurement (O_4 DSCD and/or DI) S_{ϵ} = uncertainty covariance matrix of the measurement

K = weighting functions = $\partial y / \partial k$

NO_2 inversion

Optimal Estimation method (Rodgers, 2000)

$$k = k_{a} + (S_{a}^{-1} + K^{T} S_{\varepsilon}^{-1} K)^{-1} K^{T} S_{\varepsilon}^{-1} (y - K k_{a})$$

 $\mathbf{k} = \mathbf{NO}_2$ vertical profile

 k_a = apriori NO₂ vertical profile S_a = uncertainty covariance matrix of the apriori profile

F = Forward model (LIDORT)y = measurement (NO₂ DSCD) $S_{\varepsilon} = uncertainty covariance matrix of the measurement$

K = weighting functions =
$$\partial y / \partial \mathbf{k}$$

aeronomie.be

Flowchart

CINDI WORKSHOP, KNMI, 6-8 July 2009

BIRA settings: O₄ xs

Based on the Beijing dataset Case: 30° elevation , pointing north, clear-sky , AOD<0.15

Measured and simulated O_4 DSCD should be equal

But sim. O_4 DSCDs = meas. O_4 DSCDs * 0.8±0.1

aeronomie.be

BIRA settings

FORWARD MODEL

P,T: Radio sondes
 surface albedo: lambertian = 0.07
 O₃ US standard profiles

□ Single scattering albedo and phase function calculated using a Mie routine and inputs from the AERONET.

OPTIMAL ESTIMATION

O₄ DSCD * 0.75
O₄ apriori: exponential profile; 1 km scaling height; AOD=0.05
Sɛ: diagonal, (DSCD error)²
S_a: see next slide
Only retrieve 4 km.
non-linear equation for optimal estimation

\square NO₂ DSCD

□ apriori: NO₂ apriori: US standard + 0.25 ppb in the lowest layer, 0.05 ppb at 4 km and a linear decrease in between.

- \Box Se: diagonal, (DSCD error)²
- \Box S_a : see next slide
- \Box Only retrieve 4 km.
- □ Linear equation for OE

BIRA settings: S_a

 $\Box S_a$ changes each iteration

Lowest layer: $S_a(1,1)=(factor*maximum(\mathbf{x}_i))^2$

 \Box At 4 km: $S_a(n,n)=0.2*S_a(1,1)$

In between a linear decrease with altitude

□Off-diagonal elements were set using Gaussian correlation functions with a correlation length of 0.05km.

NO_2 :

Aerosol:

 $\Box S_a = (factor*apriori)^2$

□Correlation length = 0.2 km

 $\square For aerosol and NO_2$ retrieval the factor making up the S_a is chosen to have a mean DFS of ~2.

Factor aerosol = 0.1 for BIRA and Bremen data
 Factor NO₂ = 0.8 for BIRA data
 = 0.3 for Bremen data

Results: aerosol

Results: Aerosol

.

CINDI NO₂ workshop, Bremen, 18-19 Nov. 2009

aerosol surface extinction

Paul Zieger; PSI Switserland

aerosol: Bremen data

aerosol: compare

MAXDOAS Bremen data 100m [1/km] 477nm

aeronomie.be

NO₂ surface concentration

NO₂ VC aerosol impact

NO₂ surface concentration

aerosol impact

NO₂ surface concentration

.be

.be

aeronomie.be

Summary

Retrieval based on LIDORT and OE.
 Correction factor for O₄ cross section xs=xs/0.75.
 S_a for aerosol retrieval changes each iteration.
 S_a tuned so that the DFS~2.

 \Box Aerosol have substantial influence on NO₂ profile shape.

□It all looks quite promising.

aeronomie.be

MAXDOAS measurement

Multi-AXis Differential Optical Absorption Spectroscopy

 Increased sensitivity towards atmospheric absorbers present close to the surface
 eliminate strato. contr. □ Use high frequency differential absorption structures to identify absorbers and quantify their abundance

Atmosphere I absorption Aerosol / Molecules I Remote sensing instrument

DOAS

□ Provides information on the **vertical distribution** of gases and aerosol in the troposphere.

ISTP 2009, Delft, 20-Oct-09

UV-VIS Channels

CINDI NO₂ workshop, Bremen, 18-19 Nov. 2009

.be