EU ACCENT Plus Workshop 15-16th May 2013

Emerging trends

Conurbation Studied by REmote Sensing of Conurbation Single gacities and Retrieved for ouscervations made by Instrumentation on space Merep THE NOISE DOWN

John P. Burrows^{1,2} and Andreas Richter

1 Institute of Environmental Physics University of Bremen, Bremen, Germany 2 Natural Environment Research Council: Centre for Ecology and Hydrology, Wallingford, Oxfordshire, U.K.

The Institute of Environmental Physics – Institute of Remote Sensing – IUP-UB

University of Bremen

IUP-UB comprises four research departments:

- Physics and Chemistry of the Atmosphere (Prof. Dr. John P. Burrows)
- Remote Sensing (Prof. Dr. Justus Notholt)
- Physical Oceanography (Prof. Monika Rheine)
- Terrestrial Environmental Phocis (Dr. Helmut Fischer)

Overarching Goal: Earth System Systems by means of Physical Methods

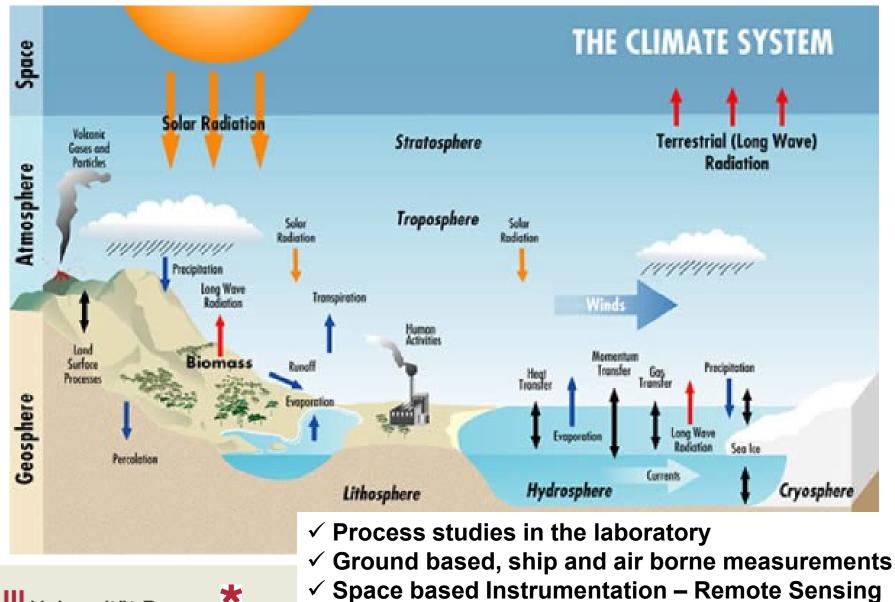
IUP-UB is a partner of the DFG(German Research Foundation) University of Bremen Marum Excellence Cluster at the University of Bremen

Environmental Science

http://www.marum.do/ima/lago/start.op.ing

IUP-UB Organisation: http://www.iup.uni-bremen.de/

Executive Board of the IUP-UB: Directors: J. P. Burrows, J. Notholt and M. Rhein + P. Lemke (AWI)


Physics and Chemistry of the Atmosphere	Remote Sensing	Physical Oceanography Professor M. Rhein	Terrestrial Environmental Physics
Professor J. P. Burrows	Professor J. Notholt	2 Senior Researchers	Dr. H. Fischer
5 Senior Researchers	2 Senior Researchers		
+ Professor A. Bracher (AWI-IUP)			
Staff: ~75	Staff: ~ 30	Staff: ~ 20	Staff: ~10

IUP-UB Academic Courses :

International M. Sc. Environmental Physics – 50 students B.A. Physics, M.A. Physics – Optional Environmental Physics courses Professor Dr. Annette Ladstätter-Weissenmayer + Professors, Senior Scientists and 2 administrative staff. Students selected from abroad have their tuition fees waivered htttp://www.pep.uni-bremen.de/

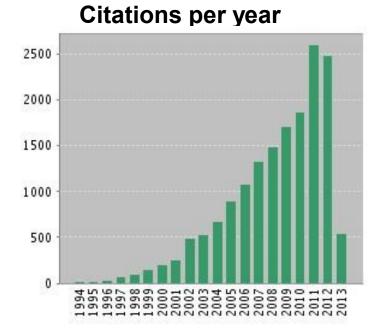
Remote Sensing Book :http://www.iup.uni-bremen.de/materials/remsensingbook/e-learning Module:http://www.iup.uni-bremen.de/deu/lehre/elearning/index.html/

The Earth System and its Climate

• Modelling for interpretation and to improve prediction

Institute of Environmental Physics, University of Bremen J. P. Burrows - 1992 to present

Klaus Künzi and Walfgang Poathar 1002 to 2000/ 2004



IUP Research Output - Results

Publications per Year

***EXZELLENT.**

ISI Web of Knowledge Analysis Ist January 1993 to 1st May 2013:

h-index:	56	
Average Citations per Item:	17	
Results found:	973	
Sum of the Times Cited:	16566	
Sum of Times Cited without self-citations:	12909	
Citing Articles:	8222	
Citing Articles without self-citations:	7479	

ACCENT PLUS is an EU Framework 7 Project http://www.accent-network.org/

ACCENT-Plus (Atmospheric Composition Change: the European Network – Policy Support and Science) is a coordination Action financed by the European Commission within FP7. It builds on the successful efforts of the Network of Excellence ACCENT which over the past six years has brought together the atmospheric science community engaged in global change and air pollution studies. The integrating activities within the ACCENT Network have produced a stronger, more cohesive community and have facilitated the engagement of a new generation of scientists who have started their career in the collaborative environment promoted by ACCENT.

1) THE ACCENT Plus CHALLENGE

Fragmentation of research efforts, lack of a shared scientific vision and insufficient availability of research tools, shared databases, etc., is a major limitation for the understanding of atmospheric composition change over Europe under a changing climate, and the consequent inadequate transfer of prospects to the decision makers for future policies. The ACCENT-Plus project builds on the successful efforts of the NoE ACCENT which has brought together the atmospheric science community engaged in global change and air pollution studies. ACCENT Plus aims at extending the breath of the previous ACCENT phase to reach out to the policy community, facilitating the transfer of research results into policy/decision making.

ACCENT PLUS is an EU Framework 7 Project http://www.accent-network.org/

ACCENT Plus PROJECT OBJECTIVES

The overarching question that ACCENT-Plus aims answering is: "How can Europe control the composition of its atmosphere under a changing climate?" A prerequisite to achieve this goal is to maintain the coordination and integration of the European science community in the field of atmospheric composition change and tostrengthen the outreach from the science domain into the policy arena and, where possible, to wider global decision making activities, by producing integrated assessment and synthesis and connecting science and policy making by transferring to the decision makers the important links between air quality and climate change and the prospects and benefits of co-control policies. ACCENT-Plus also aims at preserving and enhancing the excellence of European global change and air quality research within the European Research Area context.

ACCENT PLUS is an EU Framework 7 Project http://www.accent-network.org/

ACCENT Plus PROJECT Team

- 1 (Coordinator) Consiglio Nazionale delle Ricerche
- 2 Centre National de la Recherche Scientifique
- 3 Climate Service Centre
- 4 University of Bremen
- 5 Weizmann Institute of Science
- 6 Università di Urbino "Carlo Bo"
- 7 Paul Scherrer Institut
- 8 National Environment Research Council
- 9 University of Leicester

CNR-ISAC Italy CNRS France GKSS Germany IUP.UB Germany WEIZMANN Israel UNIURB Italy PSI Switzerland NERC UK ULEIC UK

ACCENT Plus

EU ACCENT PLUS and ICACGP Workshop on "Pollution studied by REmote Sensing of Conurbations/megacities and Retrieved from observations made by Instrumentation on space BasEd platforms – PRESCRIBE 15 -16th may 2013"

Objectives of PRESCRIBE

- 1) Assess the current achievements and capability of remotes sensing of large agglomerations and their emission from space and our interpretative capability
- 2) Identify gaps in the observational strategy and interpretative/modelling capability
- 3) Make recommendations for the way forward

DELIVERABLE – Workshop report We would like to publish at the most appropriate place.

EU ACCENT PLUS and ICACGP Workshop on

"Pollution studied by REmote Sensing of Conurbations/megacities and Retrieved from observations made by Instrumentation on space BasEd platforms - PRESCRIBE"

Draft Agenda

Day 1, 15th May 2013

09:00 - 09:30	Arrival, Registration, Coffee
09:30 - 10:00	Opening, Welcome and Introduction
10:00 - 10:30	Overarching Objectives of the Workshop
10.00 10.00	- Presentation (John P. Burrows)
	- Formation of the two working groups
	- Discussion
10:30 - 11:00	Coffee Break
	Block 1: Status of Current Space Based Research on Atmospheric
	Composition of Conurbations / Megacities
11:00 - 11:20	J. Drummond: Insights from Long Term Measurements of CO from Space
11:20 - 11:40	A. Boynard: How able is IASI for tracking pollution?
11:40 - 12:00	G. de Leeuw: Aerosol retrieval using satellite data
12:00 - 12:20	Y. Xue: Multi-scale AOD Retrieval from Satellite Data for Beijing Air Pollution Study
12:20 - 12:40	M. Vrekoussis: On the impact of the economic recession on urban air quality: Trends in air pollution levels
12:40 - 13:00	P. Valks: GOME-2 observations of air quality in Chinese Megacities
13:00 - 14:00	Lunch Break
	Block 1 continued
14:00 - 14:20	U. Platt: Ground truth for flux measurements from Urban Areas
14:20 - 14:40	P. Schneider: A global SCIAMACHY-based trend analysis of tropospheric NO2 over megacities
14:40 - 15:00	A. Hillboll: Changes in tropospheric NO2 over megacities: A multi-instrument approach
15:00 - 15:20	S. Beirle: From columns to emissions - how much a-priori do we need?
15:20 - 15:40	T. Wagner: Estimating megacity trace gas emissions using satellite observations
	of tropospheric species and wind fields
15:40 - 16:00	Coffee Break
	Block 2: Perspectives for future Space Based Research on Megacities
16:00 - 16:20	R. Cohen: A Space Based Perspective on Urban Emissions and
	Photochemistry: Winds, Spatial Resolution and perspectives on Future progress
16:20 - 16:40	R. Leigh: Remote sensing of NO2: Integrating slant column measurements into
	operational air quality management systems.
16:40 - 17:00	J.P. Veefkind: TROPOMI on the Sentinel 5 Precursor: global urban-scale
17.00 17.00	monitoring of air quality and climate
17:00 - 17:20	H. Bovensmann: Hourly geostationary observations of key constituents to
	constrain air pollution and tropospheric chemistry at the Urban scale: GMES
17:20 - 17:40	Sentinel-4
17:20 - 17:40	M. Buchwitz: Carbon gases (CO2, CO) over anthropogenic source regions: From SCIAMACHY to CarbonSat
17:40 - 18:30	Wrap-up session, Day 1
17.40 = 10.30	Teaming of the Break out Working Groups:
20:00	Dinner
20.00	Dimo

Day 2, 16th May 2013

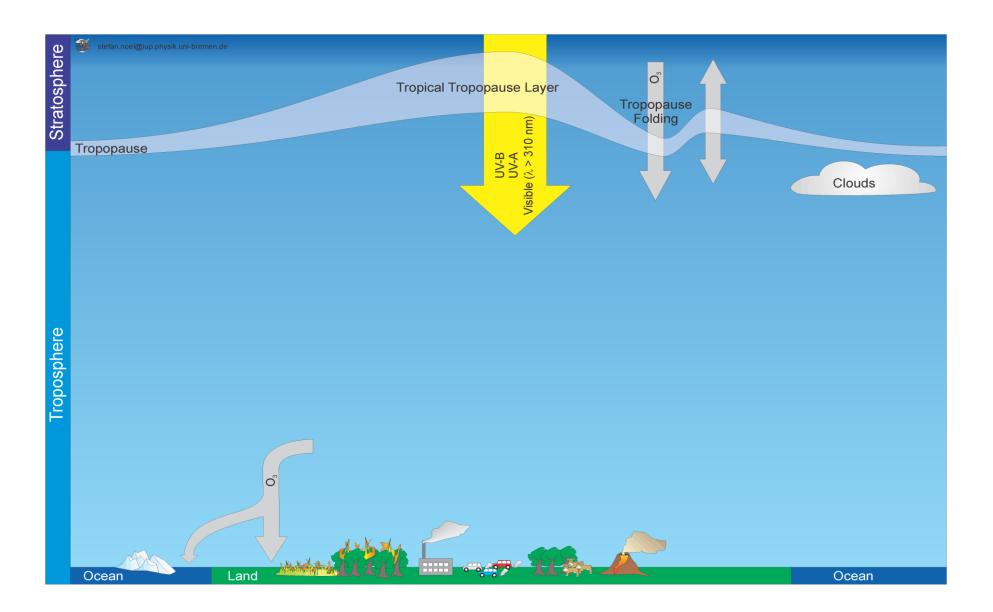
	Block 3: Use of Remote Sensing for Megacity Observations coupled with Models
08:20 - 08:40	M. Gauss: Use of satellite observations in EMEP modelling
08:40 - 09:00	M. Kanakidou: Synergistic use of chemistry-transport modelling and satellite
	observations for air pollution control.
09:00 - 09:20	B. Mijling: Fast emission estimates in China and South Africa constrained by
	satellite observations
09:20 - 09:40	T. Stavrakou: Addressing the role of major chemical uncertainties on top-
	down NOx and VOC emission estimates
09:40 - 10:00	I. Konovalov: Using satellite NO2 measurements to infer multiannual changes
	in CO ₂ emissions in China
10:00 - 10:30	Discussion
10:30 - 11.00	Coffee Break
11:00 - 12:30	Block 4: Working Groups
	 A Requirements for evolution of Instrumentation
	 B Requirements for Modelling and Inversion
12:30 - 13:30	Lunch Break
13:30 - 14:30	Block 4 continued
14:30 - 15:00	Presentation from working groups
15:00 – 15:15	Coffee Break
15:15 - 16:00	Planning of the review
	Assignment of writing tasks
16:00	End of meeting

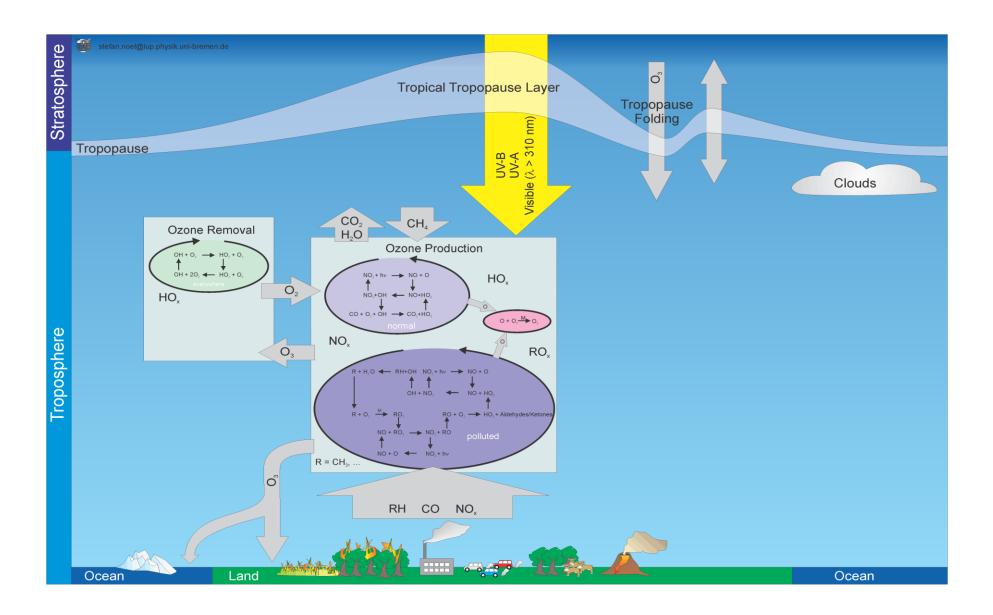
THE ANTHROPOCENE

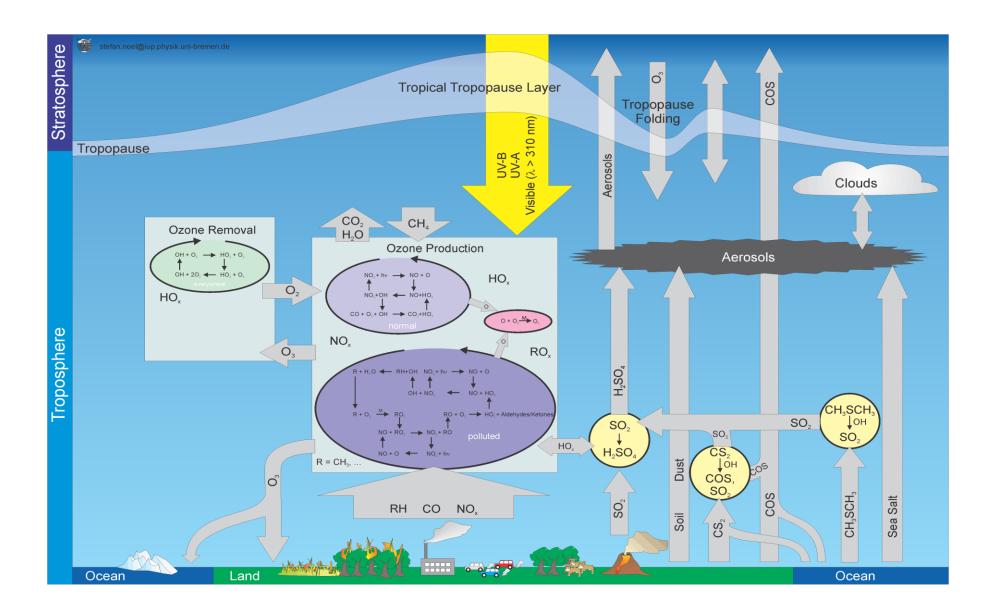
The Anthropocene defines Earth's most recent geologic time period as being human-influenced, or anthropogenic, based on overwhelming global evidence that atmospheric, geologic, hydrologic, biospheric and other earth system processes are now altered by humans.

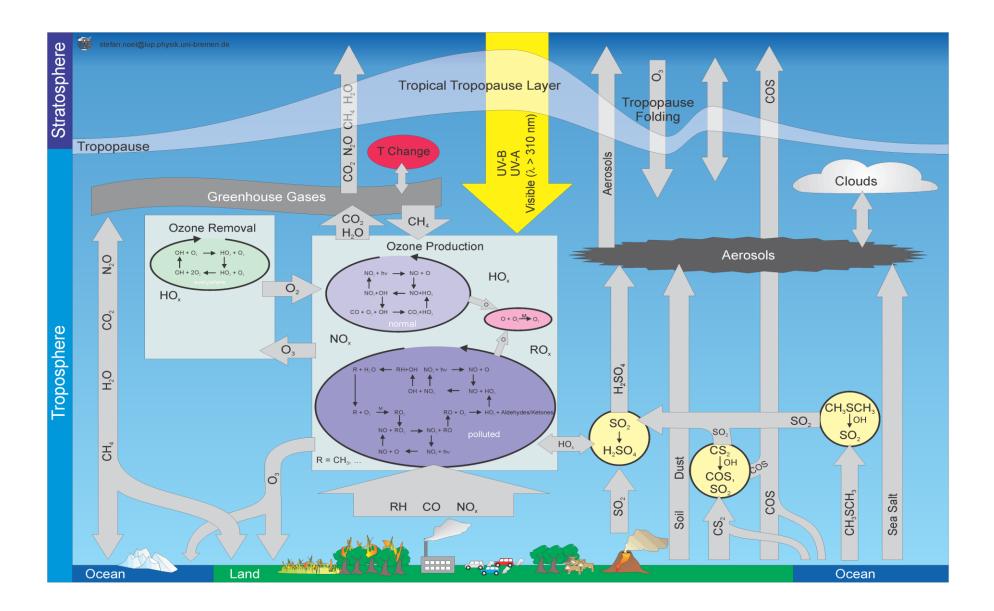
The line corresponding to 1950 highlights the **Great Acceleration**, the post-World War II worldwide industrialization, techno-scientific development, nuclear arms race, population explosion and rapid economic growth.

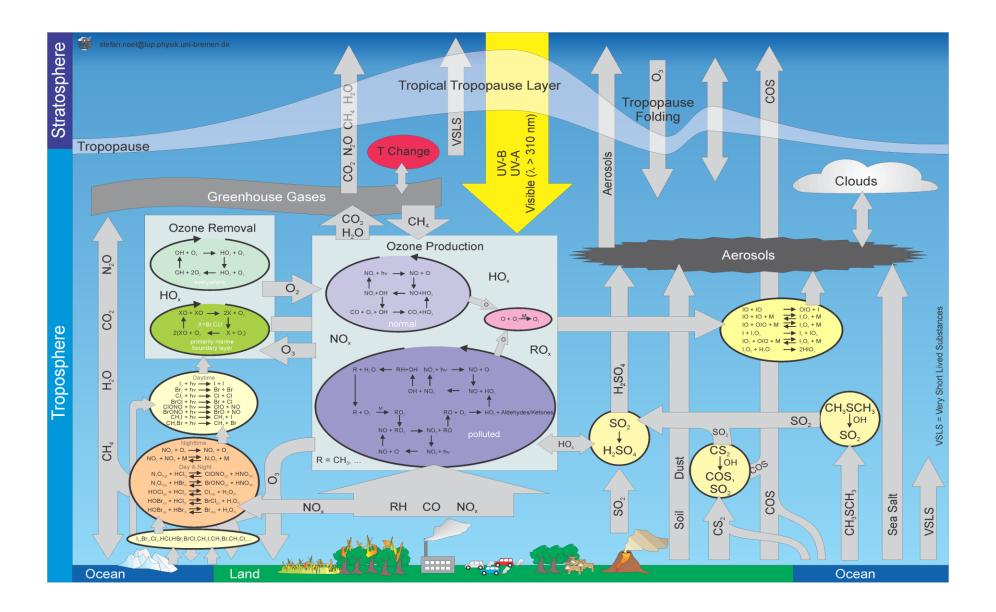
These graphs were compiled in a publication of the International Geosphere-Biosphere Programme (IGBP).

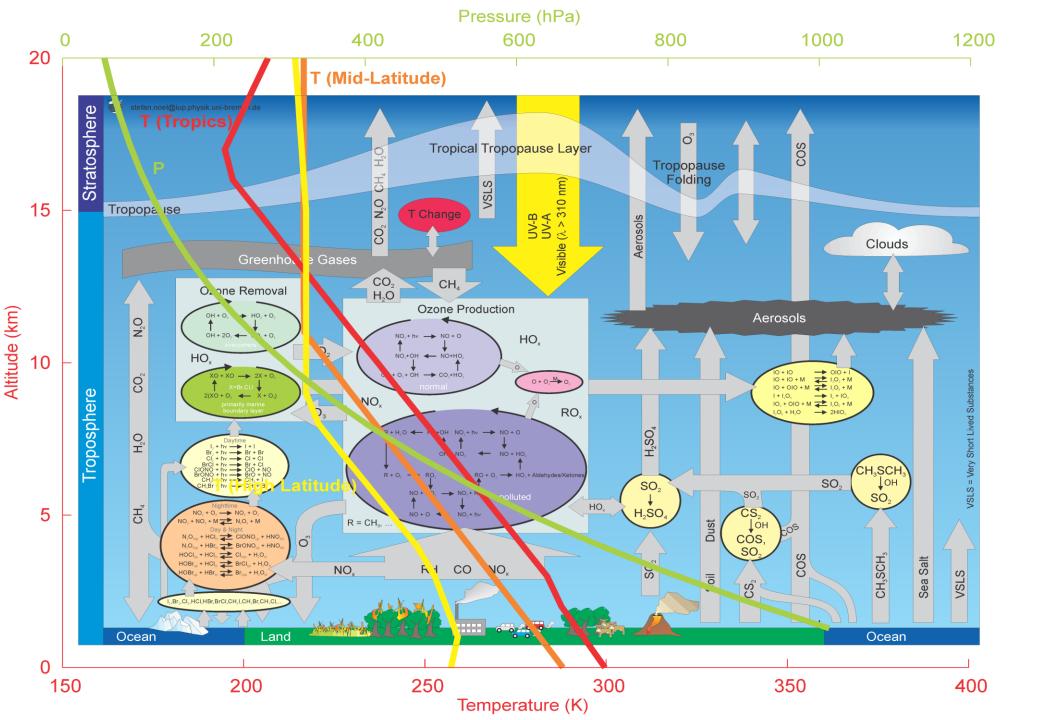

Why observe the atmosphere from space?

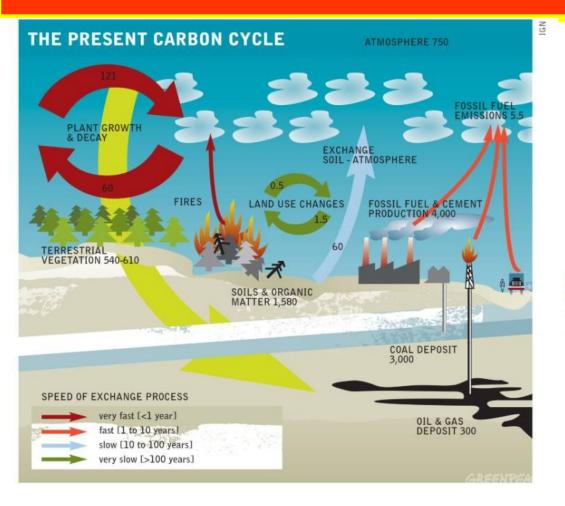

Conditions in the Biosphere depend on the Sun, the atmosphere, and earth's surface and their non linear feedback.

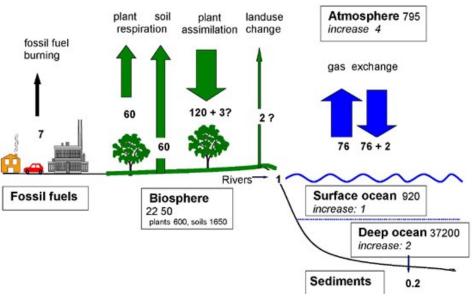

- Dramatic changes in population and anthropogenic emissions since 1800!
- 2 Billion more People since SCIAMACHY proposed - total now over 7 Billion
- Anthropocene Mankind is changing the Earth-Atmosphere system → Changes in
- Global transport and transformation of pollution
- Climate Change Chemistry climate feedback
- Global destruction of stratospheric ozone




- ⇒ It is impossible understand or manage what is not measured!!
- Environmental/Climate Change requires Global Observations
- ⇒ Evidence base for testing understanding and policymaking







Climate Change and The Carbon Cycle

The global atmospheric CO₂ Cycle (2000-2005)

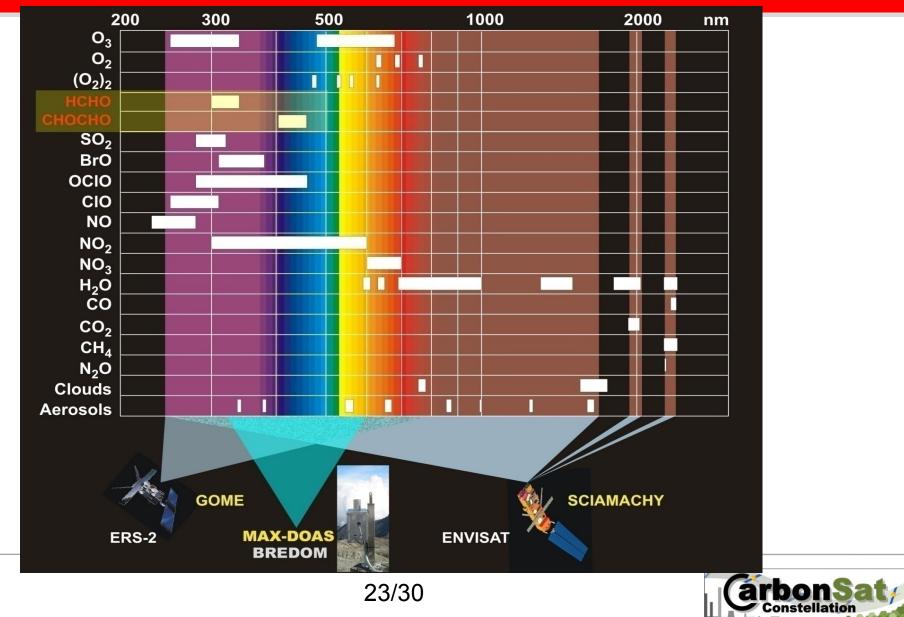
Units: PgC (1015 gC) and PgC per year

Anthropogenic vs. Natural ?

Anthropogenic

- Biomass Burning
- Pollution/Air Quality
- Acid Deposition
- Oxidising Capacity
- Surface Fluxes
 Greenhouse Gases

Natural


- Biomass Burning
- Lightning
- Volcanoes
- Oxidising Capacity
- Surface Fluxes
 - Emission
 - Deposition

COUPLING

SCIAMACHY: Target Molecules + Parameters

LEO - Low Earth Orbit – Atmospheric Remote Sensing Relevant History in Europe

1984—1985	MAPS (Mapping of Atmospheric Pollution) proposal for ESA EURECA platform
	by Burrows Perner and Crutzen - rejected
1984-1988	Development of SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) concept Burrows et al – hunting light and shadow
1988	Submission of SCIAMACHY to ESA call for POEM Later called Envisat - Burrows et al
1988	Proposal of SCIA-mini to ESA call for ERS-2 – Burrows et al
1989	Selection of SCIAMACHY for ENVISAT
1990	Selection of GOME, a descoped SCIA-mini, for flight on ERS-2
1995	Launch of GOME on ESA ERS-2 20th April
2000	Selection of GOME-2 for Metop series of platforms
2002	Launch of SCIAMACHY on ENVISAT
2004	Launch of Aura with OMI
2006	Launch of Metop A with GOME-2 19 th October
2007	EUMESAT Post Metop Committee recommends GOME-2 follow on UVNS
2008	EU GMES agrees to fund Sentinel 5 for Metop Second Generation
2011	ESA decommission ERS-2 and GOME July to September
2012	Loss of Envisat 9 th April
2012	Launch of GOME-2 on Metop-B 17 th September
2012	Sentinel 5 funding agreed for Metop Second Generation 2020- 2034

Geostationary Measurement of Trace gases: relevant European history and development

- 1997 IGAC Conference Toronto, Canada, discussions with Jack Fishman and Arlin Krueger: GeoTropSAT an VULCAN concept
- **1997** Development of GeoSCIA Concept, targeting SCIA trace gases
- **1998** Proposal of GeoSCIA UV-VIS-NIR to ESA Earth Explorer Mission EEM-1 IUP – UB led team Burrows et al.
- 2000 Proposal of GeoSCIA++ UV-VIS-NIR-SWIR-TIR/Lightning/fire to ESA EEM-2 IUP – UB led team Burrows et al.
- 2002 Proposal of GeoTROPE UV-VIS-NIR-SWIR-TIR to ESA EEM-3 IUP – UB led team Burrows et al.
- 2003 Proposal of GeoSCIA^{light} UV-VIS (-NIR) to DLR national call IUP – UB led team Burrows et al. – Regional
- 2005 Proposal of GeoTROPE^{Regional} UV-VIS-NIR + TIR to ESA EEM-3 IUP – UB led team Burrows et al. – Regional

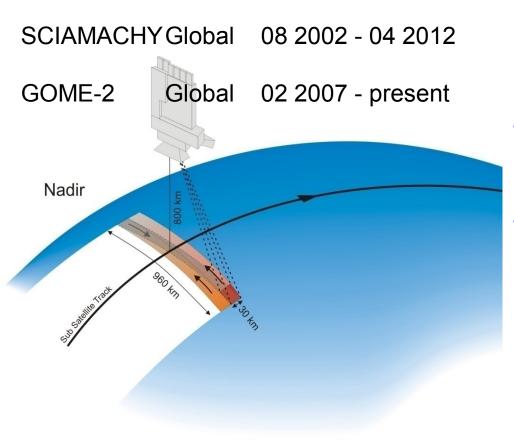
Universität Bremen

Geostationary Measurement of Trace gases: relevant European history and development

- 2005 EUMETSAT Meteosat Third Generation advisory Committee recommend UVS Instrument for MTGStudy (EUMETSAT Phase 0)
- 2006 UVS Instrument for Study (EUMETSAT Phase 0)
- 2007 EU GMES Working Group 4 recommend GeoSCIA like UVN
- 2007GMES Sentinel 4 UVN Study(ESA Phase 0)
- 2008 ESA/EUGMES/EUMETSAT Decision to fly S4 UVN on METEOSAT Third Generation two instruments planned for 2018 to 2032 flies with IRS, an FTIR yielding H_2O , CO, $O_3...$ on MTG B – Combination similar to GeoTROPE-R
- 2009 EU GMES Sentinel 4 UVN

(ESA Phase A)

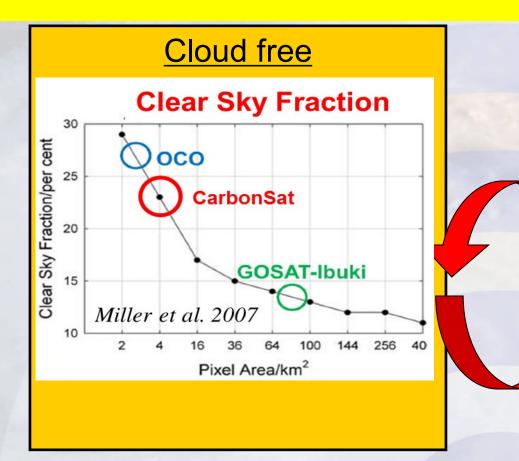
2011 Phase B2/C/D for S4 initiated by ESA


2012 The MTG series comprises four imaging and two sounding satellites.

The MTG-I imaging satellites will carry the Flexible Combined Imager (FCI) and the Lightning Imager. The MTG-S sounding satellites will carry an Infrared Sounder (IRS) and an Ultraviolet Visible Near-Infrared spectrometer, which will be provided by ESA as the GMES Sentinel-4 mission. The primary objective of the GMES Sentinel-4 mission will be to support air quality monitoring and forecasting over Europe, in full synergy with the IRS sounder.; now entering phase B. 2018 to 2032.

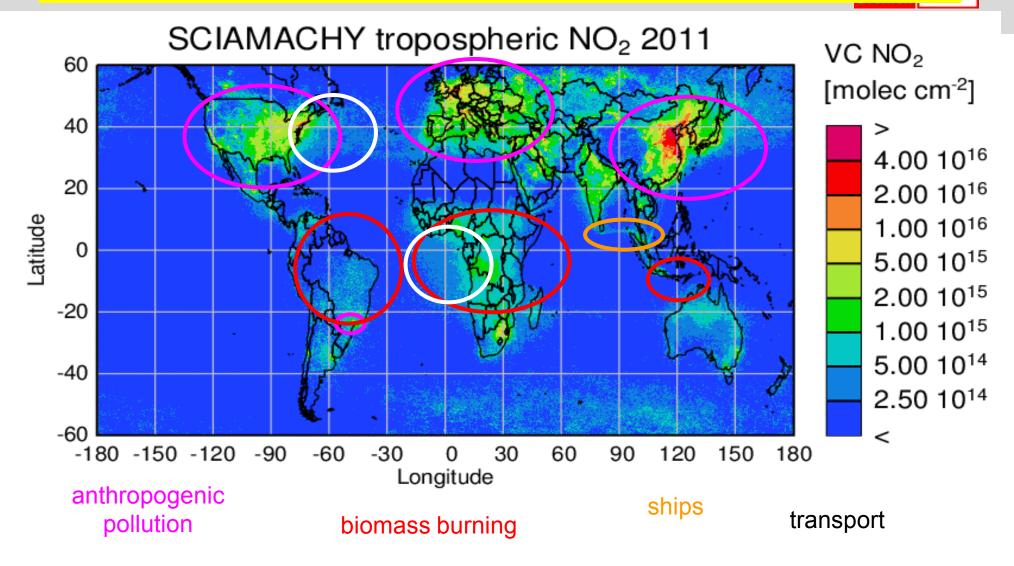
Legacy Data Sets : 1995 - present Nadir Viewing Geometry

GOME Global 07 1995 - 06 2003 Regional07 2003 - 07 2011


- horizontal resolution in across track:
 - GOME 80 and 320 km global 1995-2003 partial 2003- present
 - SCIAMACHY 30-240 km global 2002- present
 - GOME-2 40-80 km
- horizontal resolution in along track:
 - GOME-1 and -2 40 km
 - SCIAMACHY 30 km
 - Global coverage:
 GOME-1 swath 960 km 3 days at the equator 10:30 am crossing time
 SCIAMACHY swath 960 km 6 days at the equator 10:00 crossing time
 GOME-2 swath 1950 km
 ~1 day at the equator crossing time
 09:30 am

Two main issues ?

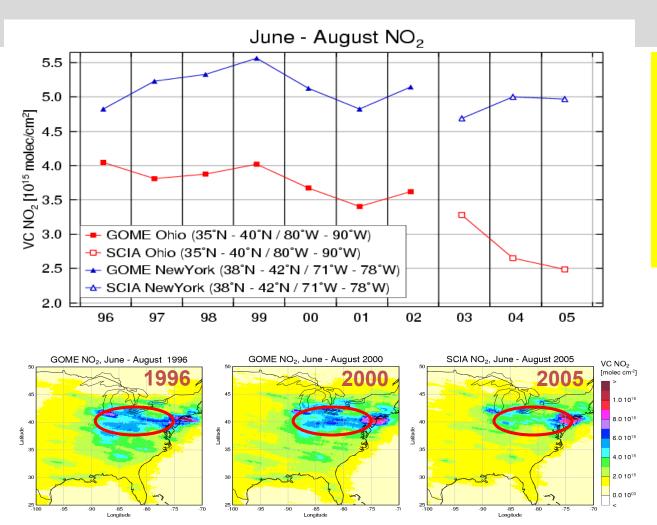
COUPLING


Spatial Scales dynamics and chemistry

- Biomass Burning
- Lightning 1-5 km²
- Volcanoes 0.5 km²
- Oxidising Capacity
- and tropospheric processing m² to global
- Surface Fluxes
 - Emission chimney 1m² upwards
 - Deposition

Universität Bremen

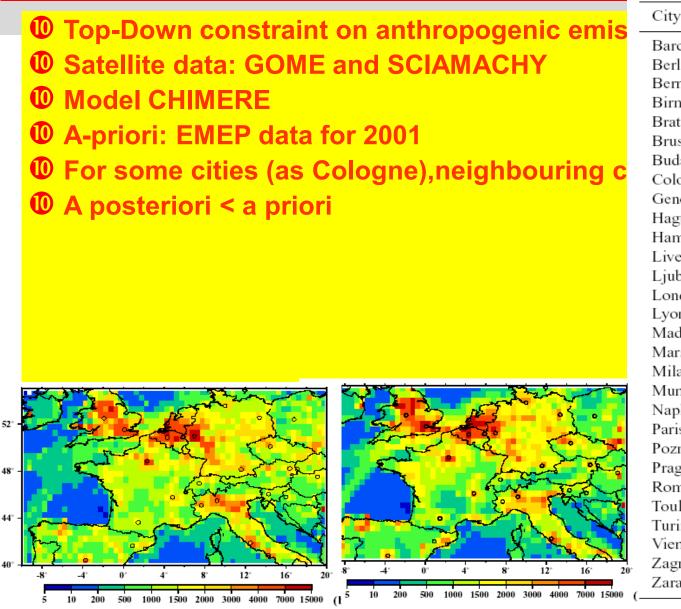
🧐 🎆 if


Tropospheric NO₂ and Sources?

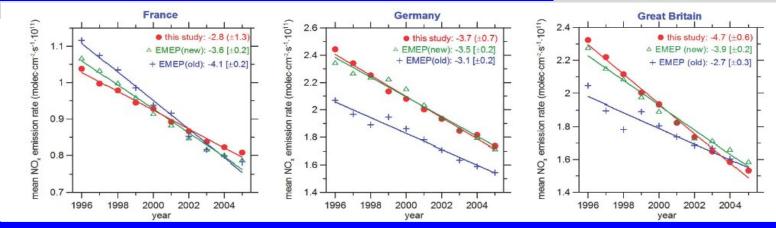
Monitoring Sources/Sinks NO₂: US Power Plant "Denoxification"

GOME NO₂ time-series
 after 2000, clear decrea
 no change in urban are
 size and geographical

Bremen

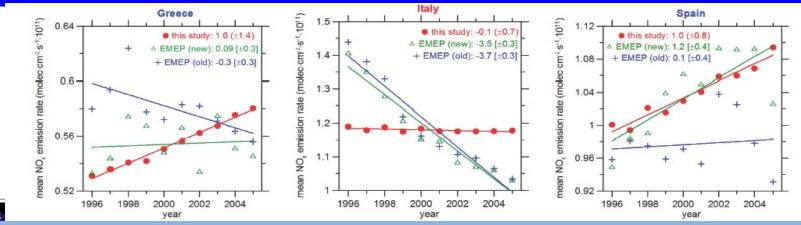

S. Kim, A. Heckel et al 2006 NOAA and University of Bremen GRL November 2006

NO2 Emission Rates in European Cities


City	A priori	A posteriori
Barcelona	2.79	1.95 (1.2)
Berlin	2.25	1.56 (1.4)
Bern	0.98	1.01 (1.3)
Birmingham	5.07	4.56 (1.2)
Bratislava	1.09	1.12 (1.3)
Brussels	5.00	4.83 (1.3)
Budapest	2.31	2.16 (1.3)
Cologne	5.64	6.18 (1.4)
Geneva	1.04	1.14 (1.3)
Hague	7.25	6.84 (1.4)
Hamburg	2.33	1.69 (1.3)
Liverpool	3.69	3.37 (1.6)
Ljubljana	1.05	1.14 (1.3)
London	7.76	4.75 (1.4)
Lyon	1.73	1.65 (1.2)
Madrid	2.23	2.73 (1.2)
Marseille	1.93	1.68(1.2)
Milan	3.13	3.37 (1.2)
Munich	2.03	1.93 (1.2)
Naples	1.98	2.25 (1.1)
Paris	4.68	3.92 (1.3)
Poznan	0.57	0.69 (1.3)
Prague	2.18	2.09 (1.2)
Rome	3.20	3.28 (1.2)
Toulouse	0.86	0.74 (1.3)
Turin	1.41	2.29 (1.3)
Vienna	1.87	1.69 (1.3)
Zagreb	1.15	0.88 (1.3)
Zaragoza	1.41	1.36 (1.5)

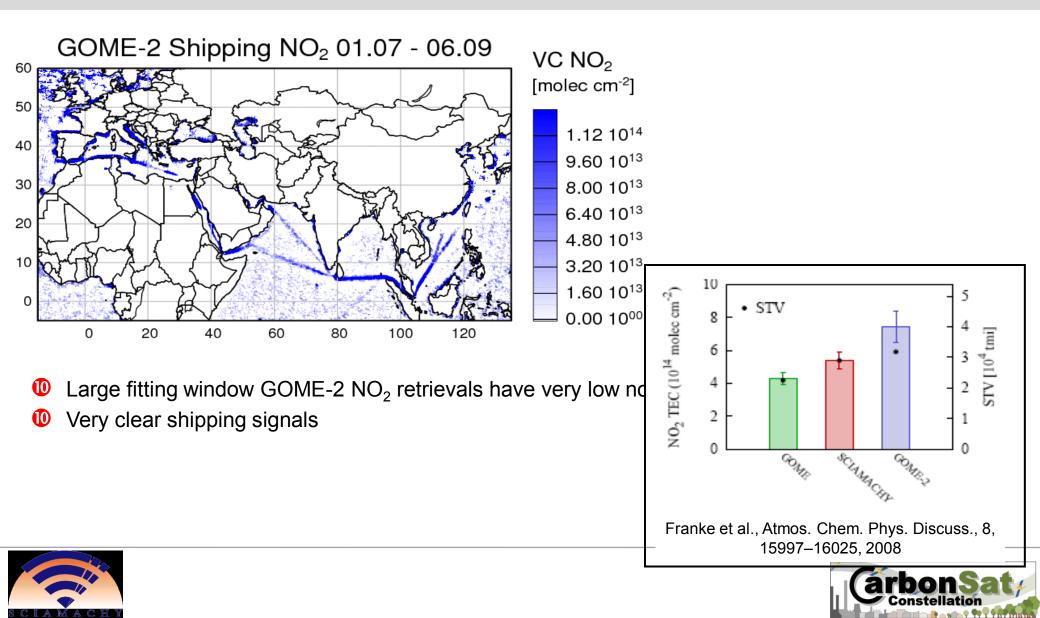
Konovalov, et al. 2005, 2007

NO₂ Change in Europe



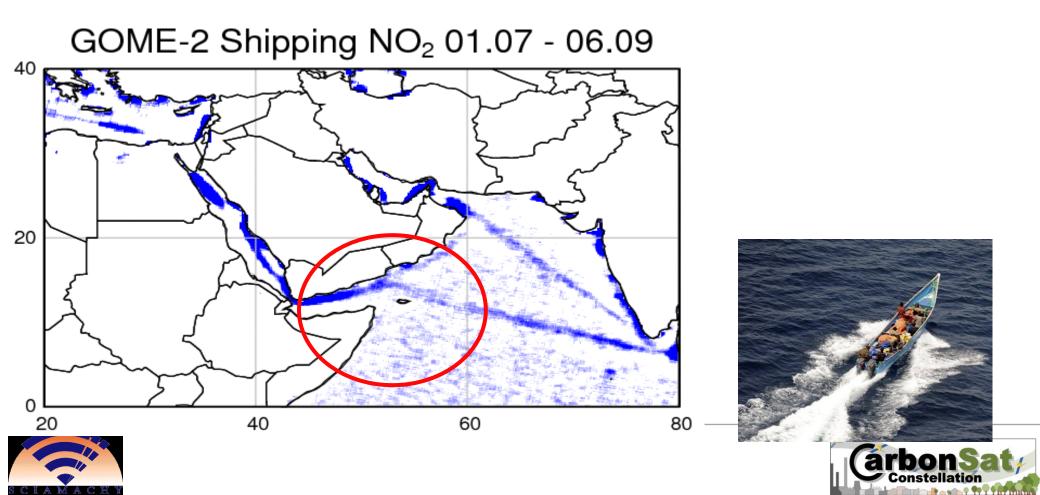
GOME and SCIAMACHY data over Europe + CHIMERE

Comparison to two versions of EMEP emissions

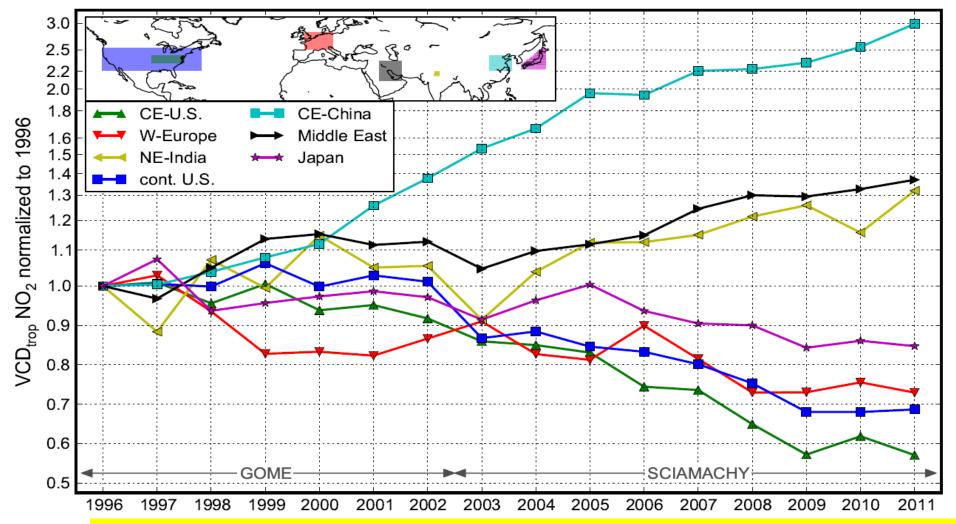

Excellent agreement with latest EMEP in NE, disagreement in SE.

Konovalov, I.et al., Satellite measurement based estimates of decadal changes in European nitrogen oxides emissions, Atmos. Chem. Phys. Discuss., 8, 2013-2059, 2008

Shipping NO₂ data

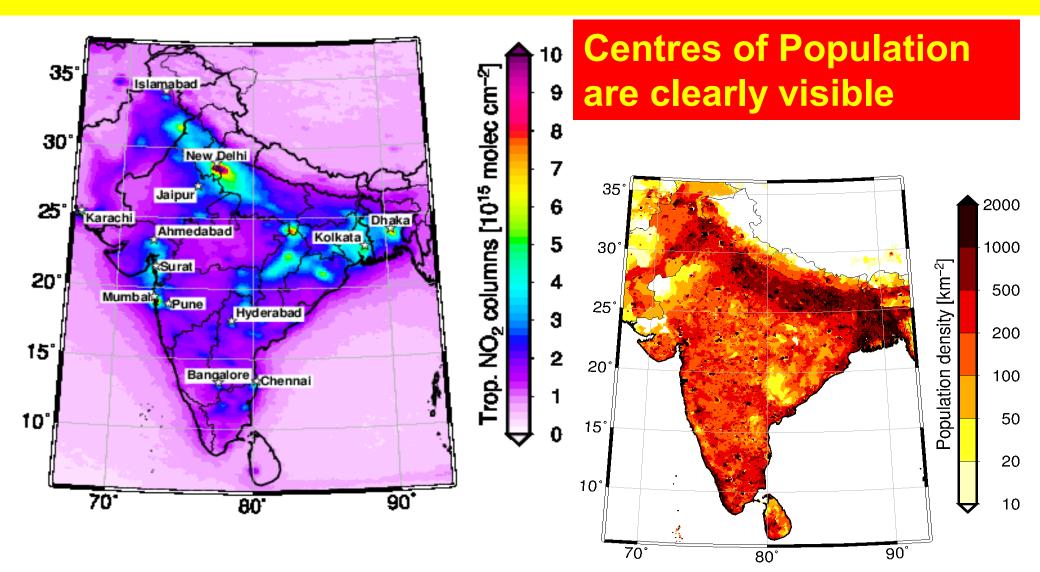


Shipping NO₂ in GOME-2 data

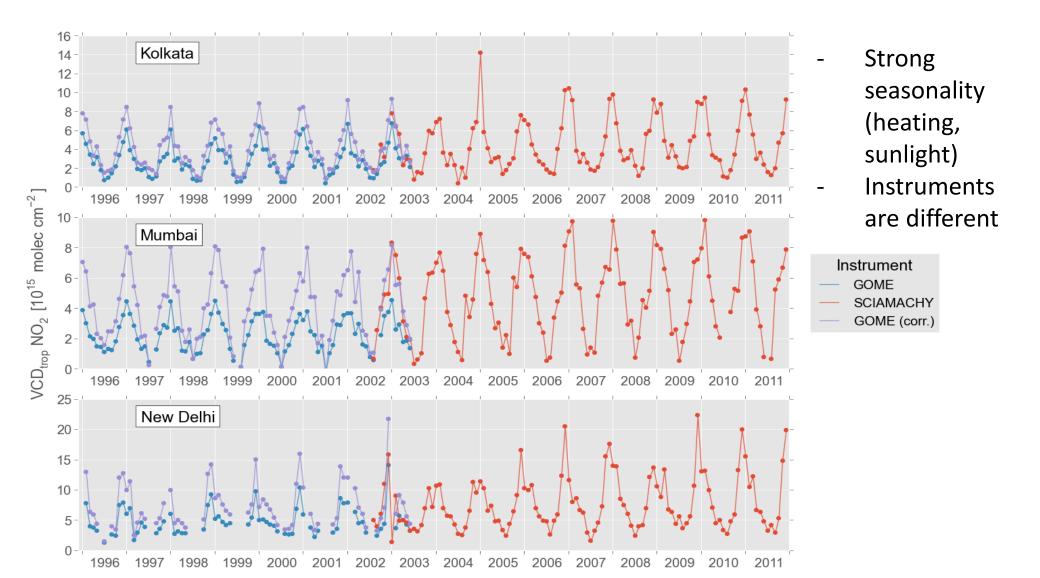


Pattern of shipping NO₂ close to Somalia has changed in 2007

Probably as an attempt to evade pirates



NO₂ Changes over Regions Hilboll et al., 2012/2013



Hilboll, A., Richter, A., and Burrows, J. P.: Long-term changes of tropospheric NO2 over megacities derived from multiple satellite instruments, Atmos. Chem. Phys., 13, 4145-4169, doi:10.5194/acp-13-4145-2013, 2013.

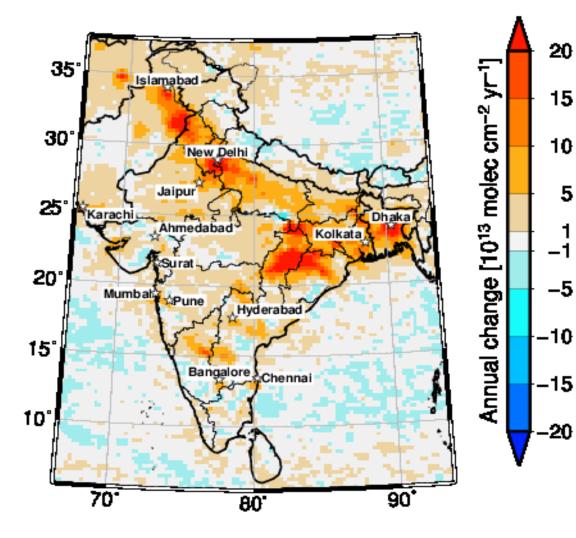
Tropospheric NO₂ column over Indian Subcontinent observed from space: SCIAMACHY (2003-2011)

Timeseries over Megacities

Tropospheric NO₂ column over the Indian Subcontinent is increasing strongly

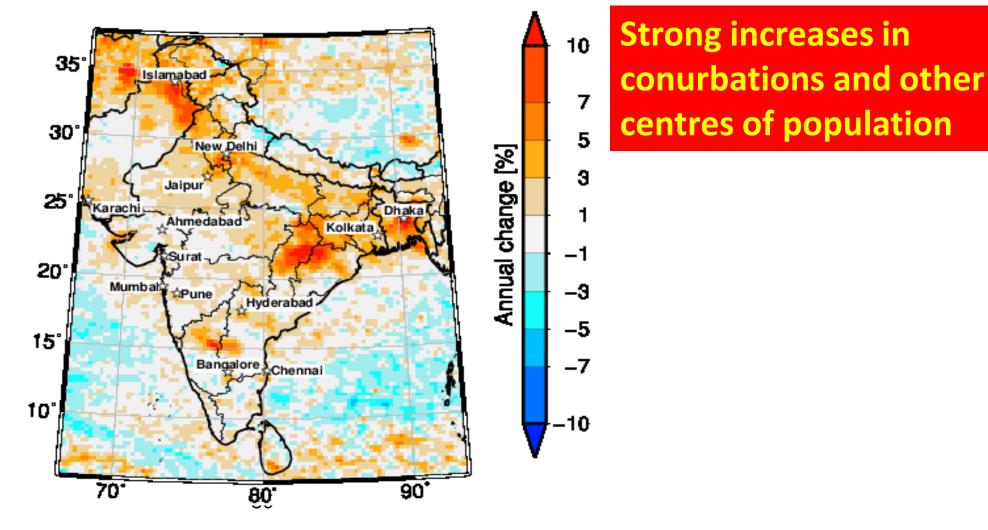
20

15


10

5

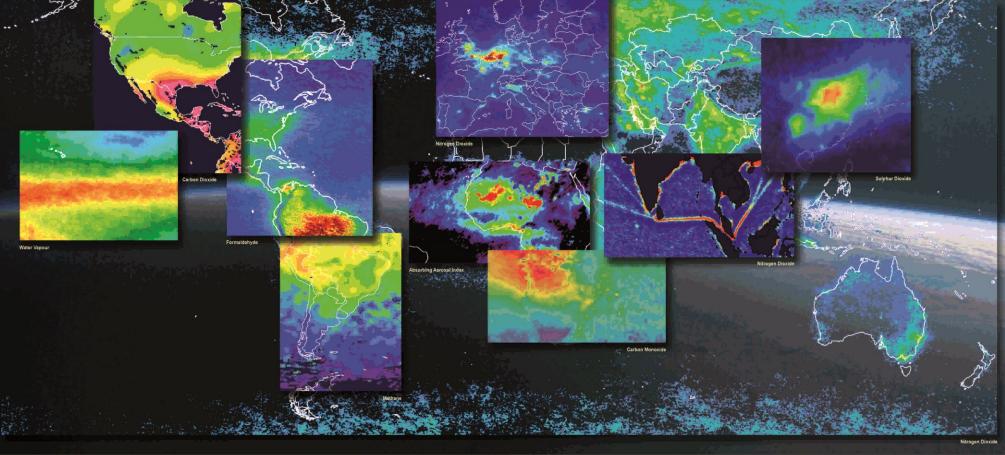
-5

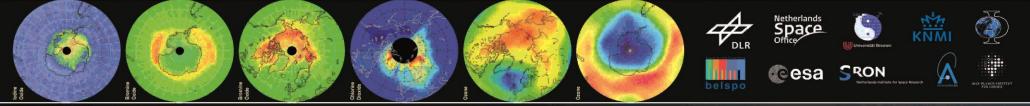

-15

20

- Tropopsheric NO₂ strongly increases in major centres of population
- Attributed to fossil fuel, domestic heating and cooking and related
- Strongest relative increase is in Odisha and Chhattisgarh
- Attributed to heavy industry + electricity

Tropospheric NO₂ over India is strongly increasing in populated regions




Drummond Burrows Psychological Phasing of Satellite Remote Sensing from Space.

1st Phase - Proposal Disbelief - It is impossible not worth doing anyway 2nd Phase - Pre-flight Acquiescence - well as we have to do something, industry needs projects, your team could help but the concept has to be descoped etc. 3rd Phase - Critical Acclaim Post-Launch and In-Flight - How come it does not work better, poor resolution and sampling, how come it cost so much, could you not do better etc.!

Universität Bremen

SCIANACHY (2002-2012 hunting light and shadows

