PRESCRIBE WS, 15./16.5.2013, Bremen

Hourly geostationary observations of key constituents to constrain air pollution and tropospheric chemistry at the urban scale: Sentinel-4 UVN on MTG

Heinrich Bovensmann, Stefan Noël, Klaus Bramstedt, John P. Burrows

Institute of Environmental Physics, University of Bremen, FB 1, P.O. Box 330440, D–28334 Bremen, Germany

B. Veihelmann, ESA / ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands

Sampling the diurnal variation

Hourly data of tropospheric composition in combination with modelling and data assimilation will allow

- to discriminate meteorology, photo-chemistry and emission
- to improve emission estimates
- to get deeper insight into processes

Monitoring City Emissions

Beirle et al., Science, 2011

- Mean NO₂ TVCD for the Middle East (OMI 2005-2009, cloud-free, calm)
- Approach currently limited to large and well spatially isolated cities due to spatial resolution of used sensor (13 x 24 km², OMI)
- with 8 x 8 km spatial resolution and hourly measurements during day time, will allow to determine city emissions at least on a monthly basis and with a short response time (some month).

Some History: GeoSCIA -> S4 UVN

1997 IGAC Conference Toronto, first results on trop. NO2, SO2 from GOME/ERS-2 and inspiring discussion with Jack Fishman about the geostationary concepts

2008	Decisio	n to flv S4 UVN	l on MTG		
2007	GMES S	Sentinel 4 UVN	(ESA Phas	se 0)
2005	MTG U\	/S	(EUMET	SAT Phas	e 0)
2003 GeoSCIA ^{li} 2005 GeoTROF	ight ⊅ERegional ∣	UV-VIS (-NIR) UV-VIS-NIR + 1	(TIR (to DLR) to ESA)	
2002 GeoTROF	°E	UV-VIS-NIR-SV	VIR-TIR	(t	o ESA)
2000 GeoSCIA-	++	UV-VIS-NIR-SV	VIR-TIR/L	iathnina (t	o ESA)
1998 GeoSCIA		UV-VIS-NIR		(t	o ESA)

(ESA Phase A/B)

2008-10	Sentinel 4 UVN
Since 2011	Sentinel 4 UVN Phase C/D

2019 Launch

Copernicux (exGMES) dedicated missions: Sentinels

	Sentinel 1 – SAR imaging All weather, day/night applications, interferometry x 2 satellites, 693 km, SSO dawn-dusk orbit	2013 / 2015	Î
	Sentinel 2 – Multi-spectral imaging Land applications: urban, forest, agriculture, Continuity of Landsat capabilities, SPOT etc x 2 satellites, 786 km, SSO, LTDN 10:30 am	2013 / 2016	
<u>> @</u>	Sentinel 3 – Ocean and global land monitoring Wide-swath ocean color, vegetation, sea/land surface temperature, altimetry x 2 satellites, 814 km, SSO, LTDN 10:00 am	2013 / 2017	
	Sentinel 4 – Geostationary atmospheric Atmospheric composition monitoring, trans- boundary pollution, x 2 instruments on MTG series, 7 year ea	ach 2019	
	Sentinel 5 – Low-orbit atmospheric Atmospheric composition monitoring. X 2-3 instruments on METOP-SG series (S5 Precursor launch in 2015, x 1 satellite, to fly with NPP)	2015/2020+	

· Clesse

The GMES Sentinel 4 & 5

- The GMES (Global Monitoring of Environment and Security) Sentinel program is driven by **operational** user requirements
- GMES Sentinel 4, 5 and 5P focus on atmospheric chemistry
- S4 UVN serve requirements on tropospheric data with high temporal (< hour) and spatial (< 10 km SSP) resolution on O₃, NO₂, HCHO, SO₂ and aerosol.

GMES Sentinel 4 on <i>EUMETSAT MTG</i>	Sentinel 5 EUMETSAT Post-EPS	Sentinel 5 Precursor
Geostationary 0° E	Sun-synchronous similar to METOP	Sun-synchronous Early afternoon
2019 2 x 7 years	2020	2015
UVN IRS, LI, FCI	UVNS TIR, DPI, 3MI	UVNS

Constellation of Sentinels for Atmosphere Services

GEOstationary (GEO)

- Hourly revisit time over Europe
- Mainly air quality
- Diurnal cycle of tropospheric composition
- → Sentinel-4

Low Earth Orbit (LEO)

- Daily revisit time global coverage
- Climate, air quality, ozone & UV
- Tropospheric & stratospheric composition
- → Sentinel-5
- → Sentinel-5 Precursor

The MTG System

MTG-Sounder InfraRed Sounder (IRS) Sentinel-4/UVN (S4)

MTG-I Flexible Combined Imager (FCI) Lighting Imager (LI)

Sentinel-4/UVN Instrument Concept

Imaging Spectrometer in Geostationary Orbit

- Pushbroom in E/W direction
- N/S FOV: 4°, E/W FOR: 6.8°
- 8 km spatial resolution @ 45°N
- Coverage: Europe hourly
- 2 imaging grating spectrometers
- Cooled CCD detectors
- Scan mirror:

 - latitude (per steps of 5 deg up to 10 deg)
- High performance on board calibration sources (diffusers, lamp, LED)
- Instrument mass ~ 150 kg; power ~ 180 W; data rate ~ 25 Mbps

Sentinel-4/UVN Performance Requirements

Band ID	Wavelength range [nm]	Species	Spectral resolution [nm]	Spectral sampling ratio	SNR @ 50°N, 15:00 UTC, Equinox, albedo 0.05 (UV-VIS) & 0.15 (NIR) (per spectral sample)
UV	305 - 400	O_3 , SO ₂ , HCHO, AAI, AOD, Ring	0.5	3	200 - 1000
VIS	400 - 500	NO ₂ , O ₄ , CHOCHO, AOD	0.5	3	1400
NIR	750 - 775	Cloud, Aerosol	0.12	3	600

- Low sensitivity to polarisation (< 1%)
- Low level of spectral features (< 0.05%)
- High radiometric accuracy: < 3%
- High SNR

Sentinel-4/UVN Geometric Performance

- Geographical Coverage Area (GCA): Europe + part of Sahara
- Reference Area (RA): revisit time 1h

Sentinel-4 Level-2 Products

	Application				
Product	Air Quality	Climate	Surface UV	Comment	
O ₃ total & trop. column	x		X		
O ₃ profile	X		X	Synergy with infrared data from IRS	
NO ₂ total & trop. column	X				
SO ₂ total column	X			Also for volcanic eruption monitoring	
CHOCHO total column	X			By-product	
CH ₂ O total column	X				
Aerosol extinction coeff. profile, column optical depth / type / index	х	x		Also for volcanic eruption monitoring Also auxiliary for other S4 products Synergy with imager data from FCI	
Cloud optical thickness, fraction, altitude			x	Mainly auxiliary for other S4 products Synergy with imager data from FCI	
Surface reflectance daily map			x	Mainly auxiliary for other S4 products	

IRS-alone products (eg O₃, CO) assumed to be developed by EUMETSAT

S4 UVN Synergies on MTG for Tropospheric Chemistry and Air Pollution Applications

MTG-IRS, MTG-UVS/S4 UVN, and MTG-FCI and LI will provide unique and relevant data for tropospheric monitoring applications

Summary & Mission Implementation Status

- S-4 UVN according to Phase A/B concepts and performance is capable to provide important and unique data on trop. O₃, NO₂, SO₂, HCHO and aerosol relevant for European air pollution applications and research.
- Instrument Preliminary Design Review completed \rightarrow Phase C/D
- L2 pre-development ongoing
 - aerosol profile retrieval from O₂ A-band (AEROPRO study with KNMI)
 - surface reflectance map from temporally aggregated S4 data (SURMACED study with BIRA, GC, LOA, IM)
- L2 processor development in preparation
- 1st launch with MTG-S1 in 2019, 2nd launch with MTG-S2 in 2026/27

Geostationary AQ Constellation

	GEMS	ТЕМРО	Sentinel-4
Spectral range(nm)	300 – 500 nm	[290 – 690 nm]	305-500 / 750-775
Spectral resol(nm)	0.6 (3 samples)	[0.6]	0.5 / 0.12
Spatial resol	7 km NS x 8 km EW @ Seoul	[2.0 km NS x 4.5 km EW]	8 km @ 45 N
Spatial coverage	5 S – 45 N 75 E – 145 E	30 N - 65 N 40 W – 60 E	20 N – 60 N 30 W – 150 W
Obs. time	30 min	[1 hour]	1 hour
Detector @ T	CCD @ 278 K	[CCD @ 278 K]	CCD @ 230 K
Onboard calibration	Solar, cal light source	[Solar]	Solar, cal light source
Volume (m ³)	1.1 x 1.2 x 0.9	[1 x 1.1 x 1]	~1.1 x 1.2 x 0.9
Mass (Kg)	110	[100]	150
Power (W)	200 (on orbit) / 100 (transfer)	[100]	180
Data rate (Mbps)	20 (up to 40)	[9]	25 Mbps

	GEMS	ТЕМРО	Sentinel-4
Operation	2018-2027	2019-2021	2019-2035
Products	O ₃ , NO ₂ , O ₄ , SO ₂ , HCHO, AI, AOD, SSA, Cloud	O ₃ ,(UV, Vis), NO ₂ , SO ₂ , H ₂ CO, H ₂ C ₂ O ₂ , AOD, AI, Cloud	O ₃ , SO ₂ , (<i>BrO</i>), HCHO, Ring , NO ₂ , O ₄ , (<i>IO CHOCHO</i>), AAI, AOD, Cloud

Status 2013:

Phase A/B

Phase 0/A

Phase C/D

Table courtesy Jhoon Kim

Conclusions

- Future geostationary observations will allow hourly observations with approx. 8 km spatial resolution for key components impacting air quality and tropospheric composition (exception: lower trop. CO)
- The operational LEO system (METOP SG, NPOES etc.) will make the global link
- On European side the system (MTG, METOP SG) is planned to be operated from 2019 – 2034 (~ 15 years)
- Main challenge:
 - funding of scientific activities to prepare community to make use of this unique data set (Level 2 retrieval, data assimilation etc.)
- Resolving the urban scale will require higher spatial resolution (1 2 km)
- Being prepared for the over next generation (2030+) of operational missions needs intiatives NOW! (CarbonSat, SCIA-ISS etc.)

Further Reading

- Bovensmann, H., Noel, S., Monks, P., Goede, A.P.H., Burrows, J.P. The geostationary scanning imaging absorption spectrometer (GeoSCIA) mission: requirements and capabilities. Adv. Space, Res. 29, 1849–1859, 2002.
- Bovensmann, H., M. Buchwitz, S. Noël, K. U. Eichmann, V. Rozanov, J.P. Burrows, J. M. Flaud, G. Bergametti, J. Orphal, P. S. Monks, G. K. Corlett, A.P. Goede, T. von Clarmann, F. Friedl-Valon, T. Steck, H. Fischer, Sensing of Air Quality from Geostationary Orbit, Proc. of the 2002 EUMETSAT Meteorological Satellite Conference, Dublin, 2.-6.9.2002, EUMETSAT, Darmstadt, Germany, ISBN 92-9119-049, p. 89 –96, 2002.
- Bovensmann, H., Eichmann, K.U., Noel, S., Flaud, J.M., Orphal, J., Monks, P.S., Corlett, G.K., Goede, A.P., von Clarmann, T., Steck, T., Rozanov, V., Burrows, J.P. The geostationary scanning imaging absorption spectrometer (GeoSCIA) as part of the geostationary tropospheric pollution explorer (GeoTROPE) mission: requirements, concepts and capabilities. Adv. Space Res., 34, 694–699, 2004 doi:10.1016/j.asr.2003.08.068, 2004.
- Burrows, J.P., H. Bovensmann, G. Bergametti, J.M. Flaud, J. Orphal, S. Noel, P.S. Monks, G.K. Corlett, A.P. Goede, T. von Clarmann, T. Steck, H. Fischer, F. Friedl-Vallon, The geostationary tropospheric pollution explorer (GeoTROPE) mission: objectives and requirements. Adv. Space Res. 34, 682–687, doi: 10.1016/j.asr.2003.08.067, 2004.
- Flaud, J.M., J. Orphal, G. Bergametti, C. Deniel, Th. von Clarmann, F. Friedl-Vallon, T. Steck, H. Fischer, H. Bovensmann, J.P. Burrows, M. Carlotti, M. Ridolfi, L. Palchetti, The geostationary Fourier imaging spectrometer (GEOFIS) as part of the geostationary tropospheric pollution explorer (GeoTROPE) mission: objectives and capabilities. Adv. Space Res. 34, 688–693, doi:10.1016/j.asr.2003.07.072, 2004.
- Noël, S., Bramstedt, K., Bovensmann, H., Gerilowski, K., Burrows, J. P., Standfuss, C., Dufour, E., and Veihelmann, B.: Quantification and mitigation of the impact of scene inhomogeneity on Sentinel-4 UVN UV-VIS retrievals, Atmos. Meas. Tech., 5, 1319-1331, 2012.
- http://esamultimedia.esa.int/docs/S4-Data_Sheet.pdf